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SUMMARY

In the present study, we investigated the effects of slip and induced magnetic field on the peristaltic flow
of a Jeffrey fluid in an asymmetric channel. The governing two-dimensional equations for momentum,
magnetic force function and energy are simplified by using the assumptions of long wavelength and low
but finite Reynolds number. The reduced problem has been solved by Adomian decomposition method
(ADM) and closed form solutions have been presented. Further, the exact solution of the proposed problem
has also been computed and the mathematical comparison shows that both solutions are almost similar.
The effects of pertinent parameters on the pressure rise per wavelength are investigated using numerical
integration. The expressions for pressure rise, friction force, velocity, temperature, magnetic force function
and the stream lines against various physical parameters of interest are shown graphically. Moreover, the
behavior of different kinds of wave shape are also discussed. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A flow phenomena in which the fluid velocity indirectly contacts with a solid boundary having the
same velocity as the boundary itself is known as no slip condition. However, in some situations,
such as fluid flow past a permeable walls [1], slotted plates [2], rough and coated surfaces [3],
emulsion, suspensions, foam, polymer solutions, gas and liquid flow in microdevices [4], the
traditional no slip condition does not hold valid and should be replaced by a partial slip boundary
condition. The slip boundary condition was first discussed by Navier [5], in which the velocity
is proportional to the shear stress at the boundary. After the initiation of Navier, a number of
researchers have discussed the partial slip boundary condition for different kinds of fluids with
different geometries [6–9].
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Peristaltic pumping is a form of fluid transport that occurs when a progressive wave of area
contraction or expansion propagates along the length of a distensible tube containing the fluid.
Peristaltic flow occurs widely in urine transport from kidney to bladder, swallowing food through
the esophagus, movement of chyme in the gastrointestinal tract, transport of spermatozoa in the
ducts efferentes of the male reproductive tract, movement of ovum in the female fallopian tubes,
vasomotion of small blood vessels, transport of slurries, corrosive fluids, sanitary fluids and noxious
fluids in nuclear industry. Considering these applications, a number of studies have been carried out,
which involve Newtonian and non-Newtonian fluids with different kinds of geometries [10–24].

The effects of MHD on the peristaltic flow problems have applications in physiological fluids
such as blood flow, blood pump machines and for theoretical research on the operation of peristaltic
MHD compressor. Further, the application of magnetic field occurs in the form of a device,
magnetic resonance imaging (MRI), which is used for diagnosis of brain, vascular diseases and all
the human body. Only a limited attention has been focused to such a kind of study in peristalsis
[25–27].

Considering these importances, the aim of the present investigation is to discuss the effects of
induced magnetic field on the peristaltic flow of a Jeffrey fluid in an asymmetric channel in the
presence of partial slip condition. The governing equations of motion, magnetic force function and
energy in the presence of dissipation terms are simplified by long wavelength and low but finite
Reynolds number. The simplified equations are then solved by Adomian decomposition method
(ADM) and exact solutions are also calculated. It is found that the ADM solutions and exact
solutions are almost the same. The graphical results are also presented to gauge the effects of
certain physical parameters. Finally, the trapping phenomena for different wave shapes have also
been discussed pictorically.

2. MATHEMATICAL FORMULATION

Let us consider the peristaltic flow of an incompressible, electrically conducting non-Newtonian
fluid (Jeffrey fluid) in a two-dimensional channel of width d1+d2. The lower wall of the channel is
maintained at temperature T1, whereas the upper wall has temperature T0. The flow is generated by
sinusoidal wave trains propagating with constant speed c along the channel walls. We considered
a rectangular coordinate system for the channel in which the X -axis is taken along the centerline
of the channel and the Y -axis is transverse to it. An external transverse uniform constant magnetic
field, H0, induced magnetic field, H(hX (X,Y, t),H0+hY (X,Y, t),0) and the total magnetic field,
H+(hX (X,Y, t),H0+hY (X,Y, t),0), are taken into account. Finally, the channel walls are consid-
ered to be non-conductive and the geometry of the wall surface is defined as

Y =H1=d1+a1Cos

[
2�

�
(X−ct)

]
, Y =H2=−d2−b1Cos

[
2�

�
(X−ct)+�

]
(1)

where a1 and b1 are the amplitudes of the waves, � is the wavelength, d1+d2 is the width of the
channel, c is the velocity of propagation, t is the time and X is the direction of wave propagation,
the phase difference � varies in the range 0����,�=0 corresponding to symmetric channel with
waves out of phase and �=� the waves are in phase, and further a1,b1,d1,d2 and � satisfies the
condition

a21+b21+2a1b1 cos��(d1+d2)
2

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:374–394
DOI: 10.1002/fld



376 S. NADEEM AND S. AKRAM

The equations that govern the MHD flow of a Jeffrey fluid are given as

(i) Maxwell’s equation

∇ ·H=0, ∇ ·E=0 (2)

∇∧H=J, J=r{E+le(V∧H)} (3)

∇∧E=−le
�H
�t

(4)

(ii) The continuity equation

∇ ·V=0 (5)

(iii) The equations of motion

�

(
�V
�t

+(V ·∇)V
)

=divT−∇
(
1

2
le(H

+)2
)

−le(H+ ·∇)H+ (6)

where

T=−pI+S

In which for the extra stress tensor S for Jeffrey fluid is defined as

S= �

1+�1
(�̇+�2�̈)

(iv) The energy equation

�
de
dt

=s·L−divq+qr (7)

In the above equations, V is the velocity vector, � is the viscosity of the fluid, p is the pressure, E
is an induced electric field, J is the current density, le is the magnetic permeability, � is the electric
conductivity, �1 is the ratio of relaxation to retardation times, �̇ is the shear rate, �2 the retardation
time and dots denote differentiation with respect to time, q=(−K ′divT,K ′ being the thermal
conductivity) is the heat flux vector, r is the internal heat generation (radial heating) taken here to
be zero, and e=C ′T,C ′ being specific heat is the specific internal energy.

Combining Equations (2) and (3)–(5), we obtain the induction equation as follows:

�H+

�t
=∇∧(V∧H+)+ 1

	
∇2H+ (8)

where 	=1/�le is the magnetic diffusively.
Introducing a wave frame (x, y) moving with velocity c away from the fixed frame (X,Y ) by

the transformation

x= X−ct, y=Y, u=U−c, v=V
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Defining

x̄ = x

�
, ȳ= y

d1
, ū= u

c
, v̄= v

c
, 
= d1

�
, d= d2

d1
, p̄= d21 p

�c�
, t̄= ct

�
, h1= H1

d1
, h2= H2

d2
, a= a1

d1

b = b1
d1

, Re= cd1
�

, �̄= �

cd1
, �̄= �

H0d1
, pm = p+ 1

2
Re

le(H

+)2

�c2
, Nu= qwd1

K ′(T1−T0)

Rm = �led1c, S1= H0

c

√
le
�

, �= T −T0
T1−T0

, Ec= c2

C ′(T1−T0)
, Pr = �vC ′

K ′ , S̄= Sd1
�c

Using the above non-dimensional quantities, the equations that govern the MHD flow in terms
of the stream function �(x, y) and magnetic force function �(x, y) (dropping the bars and using
u=��/�y,v=−
(��/�x),hx =��/�y,hy =−
��/�x) are

Re
(�y�xy−�x�yy) = −�pm
�x

+

�
�x

(Sxx )+ �
�y

(Sxy)

+Re S21�yy+Re S21
(�y�xy−�x�yy) (9)

Re
3(�x�xy−�y�xx ) = −�pm
�y

+
2
�
�x

(Syx )+

�
�y

(Syy)

−Re
2S21�xy−Re S21

3(�y�xx −�x�xy) (10)

Re
(�y�x −�x�y) = 1

Pr
(�yy+
2�xx )

+ Ec

(1+�1)

(
1+ �2c


d1

(
�y

�
�x

−�x
�
�y

))

×(4
2�2
xy+(�yy−
2�xx )

2) (11)

�y−
(�y�x −�x�y)+ 1

Rm
(�yy+
2�xx )=E (12)

where

Sxx = 2


1+�1

(
1+ �2c


d1

(
�y

�
�x

−�x
�
�y

))
�xy

Sxy = 1

1+�1

(
1+ �2c


d1

(
�y

�
�x

−�x
�
�y

))
(�yy−
2�xx )

Syy = − 2


1+�1

(
1+ �2c


d1

(
�y

�
�x

−�x
�
�y

))
�xy
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The corresponding boundary conditions are

� = q

2
at y=h1=1+a cos2�x

� = −q

2
at y=h2=−d−bcos(2�x+�)

��

�y
+ 

(1+�1)

�2�
�y2

= −1 at y=h1

��

�y
− 

(1+�1)

�2�
�y2

= −1 at y=h2 (13)

� = 0 at y=h1

� = 1 at y=h2 (14)

�=0 at y=h1 and y=h2 (15)

where q is the flux in the wave frame,  is the slip parameter a,b,� and d satisfy the relation

a2+b2+2abcos��(1+d)2

Under the assumption of long wavelength 
�1 and low but finite Reynolds number neglecting
the terms of order 
 and higher, Equations (9)–(12) take the form

−�p
�x

+ �
�y

(
1

1+�1

�2�
�y2

)
+ReS21�yy =0 (16)

−�p
�y

=0 (17)

1

Pr
�yy+ Ec

(1+�1)
�2

yy =0 (18)

�yy = Rm

(
E− ��

�y

)
(19)

Elimination of pressure from Equations (16) and (17) yields

�2

�y2

(
1

1+�1

�2�
�y2

)
+ReS21�yyy =0 (20)

1

Pr
�yy+ Ec

(1+�1)
�2

yy =0 (21)

�yy = Rm

(
E− ��

�y

)
(22)
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With the help of Equation (22), Equation (20) takes the form

�3�
�y3

+M2(1+�1)

(
E− ��

�y

)
=F3 (23)

where F3 is a constant, M2= RmReS21 , Re is the Reynolds number, S1 is the Strommer’s number
(magnetic force number) and Rm is the magnetic Reynolds number.

3. METHODS OF SOLUTION

3.1. Exact solution

The exact solution of Equation (23) can be written as

�=F0+F1 cosh(m1y)+F2 sinh(m1y)+Ey− F3
m2

1

y (24)

where

m1=M
√

(1+�1)

and F0,F1,F2 and F3 are functions of x only and can be calculated using boundary conditions (13)

F0 =
qm1(h2+h1)+

⎛
⎜⎝

2(h2+h1)+

qm2
1



(1+�1)
(h2+h1)

⎞
⎟⎠ tanh

[
m1

(
h1−h2

2

)]

2(h2−h1)m1+2

(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

F1 =
(q+h1−h2)sech

[
m1

(
h1−h2

2

)]
sinh

[
m1

(
h1+h2

2

)]

(h1−h2)m1−
(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

F2 =
(q+h1−h2)sech

[
m1

(
h1−h2

2

)]
cosh

[
m1

(
h1+h2

2

)]

(h2−h1)m1+
(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

m3
1(q−h1E+Eh2)+

F3 =

(
2m2

1(E+1)+m4
1(q−h1E+Eh2)



(1+�1)

)
tanh

[
m1

(
h1−h2

2

)]

(h2−h1)m1+
(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

m3
1(q−h1E+Eh2)+

(25)
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3.2. Solution by the ADM

According to ADM, we rewrite Equation (23) in the operator form as

Lyyy�=(F3−m2
1E)+m2

1�y (26)

Applying the inverse operator L−1
yyy =∫ ∫ ∫ [.]dy dy dy, we can write Equation (26) as

�= A+By+C
y2

2! +(F3−m2
1E)

y3

3! +m2
1L

−1
yyy(�y) (27)

where

m2
1=M2(1+�1)

and A, B,C,F3 are functions of x . Now we decompose � as

�=
∞∑
n=0

�n (28)

Substituting � into Equation (27), we obtain

�0 = A+By+C
y2

2! +(F3−m2
1E)

y3

3!
�n+1 = m2

1

∫ ∫ ∫
(�n)y dy dy dy, n�0

(29)

Therefore,

�1 = m2
1

(
B
y3

3! +C
y4

4! +(F3−m2
1E)

y5

5!
)

�2 = m4
1

(
B
y5

5! +C
y6

6! +(F3−m2
1E)

y7

7!
)

...

�n = m2n
1

(
B

y2n+1

(2n+1)! +C
y2n+2

(2n+2)! +(F3−m2
1E)

y2n+3

(2n+3)!
)

, n>0

(30)

According to (28), the closed form of � can be written as

�= A+sinh(m1y)

(
B

m1
+ 1

m3
1

(F3−m2
1E)

)
+ C

m2
1

(cosh(m1y)−1)− 1

m2
1

(F3−m2
1E)y

which can be put in the simplest form

�=F0+F1 cosh(m1y)+F2 sinh(m1y)+Ey− F3
m2

1

y (31)

Now the Adomian solution (31) and exact solution (24) are exactly the same in which Fi (i=0–3)
are calculated using boundary conditions that are defined in Equation (25).
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Making use of Equation (24), the exact solution of Equation (21) satisfying the boundary
condition (14) can be written as

�=− EcPr

(1+�1)

⎛
⎜⎜⎝

F2
1

2
m4

1Y
2+ 1

8
(F2

1 +F2
2 )m2

1 cosh2(m1Y )− 1

4
(F2

1 +F2
2 )m4

1Y
2

1

4
F1F2m

2
1 sinh2(m1Y )

⎞
⎟⎟⎠+c1Y +c2 (32)

where

c1 = −1

(h1−h2)

+ EcPr

(1+�1)(h1−h2)

⎛
⎜⎜⎜⎜⎜⎝

1

2
F2
1m

4
1(h

2
1−h22)+

1

4
(F2

1 +F2
2 )m4

1(h
2
1−h22)

+1

8
(F2

1 +F2
2 )m2

1(cosh2(m1h1)−cosh2(m1h2))

+1

4
F1F2m

2
1(sinh2(m1h1)−sinh2(m1h2))

⎞
⎟⎟⎟⎟⎟⎠

c2 = EcPr

(1+�1)

⎛
⎜⎜⎝

1

2
F2
1m

4
1h

2
1+ 1

4
F1F2m

2
1 sinh2(m1h1)

+1

8
(F2

1 +F2
2 )m2

1 cosh2(m1h1)− 1

4
(F2

1 +F2
2 )m4

1h
2
1

⎞
⎟⎟⎠−c1h1

The exact solution of Equation (22) is defined as

�=c3y+c4+ F3Rm

m2
1

y2

2
−Rm

(
F1
m1

sinh(m1y)+ F2
m1

cosh(m1y)

)
(33)

where c3 and c4 are calculated using boundary condition (15) and are

c3 = Rm

2
(h1+h2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1(q−h1E+Eh2)+
⎛
⎜⎝

2(E+1)+


(1+�1)
m2

1(q−h1E+Eh2)

⎞
⎟⎠ tanh

[
m1

(
h1−h2

2

)]

(h1−h2)m1−
(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

c4 = Rm

m1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(q+h1−h2)+m2
1h1h2(q−h1E+Eh2)

+m1h1h2

(
2(E+1)+ 

(1+�1)
m2

1(q−h1E+Eh2)

)
tanh

[
m1

(
h1−h2

2

)]

2(h2−h1)m1+2

(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The expression for axial induced magnetic field can be obtained with the help of hx =��/�y,
which are as follows:

hx (x, y)=

Rm

⎛
⎜⎜⎜⎜⎜⎜⎝

2(q+h1−h2)sech

[
m1

(
h1−h2

2

)]
sinh

[
m1

(
h1+h2

2
− y

)]
+

⎛
⎜⎝

m1(q−h1E+h2E)+(
2(E+1)+ 

(1+�1)
m2

1(q−h1E+h2E)

)
tanh

[
m1

(
h1−h2

2

)]
⎞
⎟⎠(2y−h1−h2)

⎞
⎟⎟⎟⎟⎟⎟⎠

2(h2−h1)m1+2

(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]

(34)

where �1→0 and M→0 the solutions of Misra can be recovered as a special case of our problem.
Moreover, the Jeffrey problem with induced magnetic field has not been discussed so far.

The flux at any axial station in the fixed frame is

Q̄=
∫ h1

h2
(u+1)dy=

∫ h1

h2
u dy+

∫ h1

h2
dy=q+h1−h2

The average volume flow rate over one period (T =�/c) of the peristaltic wave is defined as

Q= 1

T

∫ T

0
Q̄ dt= 1

T

∫ T

0
(q+h1−h2)dt=q+1+d (35)

The pressure gradient is obtained from the dimensionless momentum equation for the axial velocity

dp

dx
= 1

(1+�1)
�yyy+M2(E−�y) (36)

Substituting the value of � given in (24), Equation (36) takes the form

dp

dx
=
m3

1(q−h1E+h2E)+
(
2m2

1(E+1)+ 

(1+�1)
m4

1(q−h1E+h2E)

)
tanh

[
m1

(
h1−h2

2

)]

(1+�1)

(
(h2−h1)m1+

(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)]) (37)

For one wavelength the integration of Equation (37) yields

�p=
∫ 1

0

dp

dx
dx (38)

The expression for frictional force is defined as

F=
∫ 1

0

dp

dx
dx (39)

where the expression for dp/dx is defined in Equation (37).
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The axial velocity component in fixed frame is calculated as

U (X,Y, t) = 1+�y

=

m1(h1−h2+q)

⎛
⎜⎜⎜⎝

−1+sech

[
m1

(
h1−h2

2

)]

cosh

[
m1

(
h1+h2

2
−Y

)]
⎞
⎟⎟⎟⎠

+m2
1



(1+�1)
(h2−h1−q+Eh2) tanh

[
m1

(
h1−h2

2

)]

(h2−h1)m1+
(
2+m2

1


(1+�1)
(h2−h1)

)
tanh

[
m1

(
h1−h2

2

)] (40)

where

h1=1+a cos[2�(X− t)] and h2=−d−bcos[2�(X− t)+�]

The expression for the Nusselt number for the upper wall is defined as

Nu=− ��

�y

∣∣∣∣
y=h1

Similarly, we calculate for the lower wall.
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1
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Figure 1. Variation of �p with Q for different values of �1 at a=0.7,b=1.2,
d=1.4,E=4,M=0.5,�=�/6, =0.04 (sinusoidal wave).
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Figure 2. Variation of �p with Q for different values of � at a=0.7,b=1.2,
d=1.5,E=4,M=1.5,�1=0.5,=0.04 (sinusoidal wave).
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Figure 3. Variation of �p with Q for different values of  at a=0.7,
b=1.2,d=1.4,E=4,M=0.5,�1=0.5,�=�/6 (sinusoidal wave).

4. EXPRESSIONS FOR DIFFERENT WAVE SHAPES

The non-dimensional expressions for three considered wave form are given by the following [15]
1. Sinusoidal wave:

h(x)=1+�sin(2�x)
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Figure 4. Variation of F with Q for different values of �1 at a=0.7,b=1.2,
d=1.4,E=4,M=0.5,�=�/6,=0.04 (sinusoidal wave).
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Figure 5. Variation of F with Q for different values of � at a=0.7,b=1.2,
d=1.5,E=4,M=1.5,�1=0.5,=0.04 (sinusoidal wave).

2. Triangular wave:

h(x)=1+�

[
8

�3
∞∑

m=1

(−1)m+1

(2m−1)2
sin(2�(2m−1)x)

]
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Figure 6. Variation of F with Q for different values of  at a=0.7,b=1.2,
d=1.4,E=4,M=0.5,�1=0.5,�=�/6 (sinusoidal wave).
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Figure 7. Velocity profile for different values of �1 at a=0.7,b=1.2,d=1.5,
X =1, t=1,q=−2,E=4,M=1,�=�/2,=0.04 (sinusoidal wave).

3. Trapezoidal wave:

h(x)=1+�

[
32

�2
∞∑

m=1

sin �
8 (2m−1)

(2m−1)2
sin(2�(2m−1)x)

]
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X =1, t=1,q=−2,E=4,�1=0.5,�=�/2,=0.04 (sinusoidal wave).
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Figure 9. Variation of � with Y for different values of �1 at a=0.5,b=1.2,d=1.5,
E=4,M=1, Pr =1,Ec =1,q=−0.1,�=�/2,=0.04 (sinusoidal wave).

5. GRAPHICAL RESULTS AND DISCUSSION

In this section, the graphical results are discussed to study the effects of various physical parameters
on the pressure rise, frictional force, velocity, temperature, magnetic force function and stream lines.
The expression for pressure rise and frictional force is calculated numerically using a mathematics

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:374–394
DOI: 10.1002/fld



388 S. NADEEM AND S. AKRAM

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Y

Pr=2

Pr=3

Pr=4

Figure 10. Variation of � with Y for different values of Pr at a=0.5,b=1.2,d=1.5,E=4,
M=1,�1=0.4,q=−0.1, t=1, x=1,Ec =1,�=�/2,=0.04 (sinusoidal wave).
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Figure 11. Variation of � with Y for different values of  at a=0.5,b=1.2,d=1.5,E=4,
M=1,�1=0.4,q=−0.1, t=1, x=1,Ec =1,�=�/2, Pr =1 (sinusoidal wave).

software. The graphical results of pressure rise, frictional force, velocity, magnetic force function
and temperature are displayed in Figures 1–15. Figures 1–3 are prepared for pressure rise �p
against volume flow rate Q for different values of Jeffrey parameter �1, amplitude ratio � and
slip parameter . It is observed that the relation between pressure rise and volume flow rate is
inversely proportional to each other. It means that pressure rise gives larger values for small volume
flow rate and it gives smaller values for large Q. Moreover, the peristaltic pumping occurs in
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Figure 13. Variation of hx with y for different values of Rm and  at a=0.7,b=0.7,
Q=−0.9,�=�,d=2.3,E=4,M=3,�1=4, x=0 (sinusoidal wave).

the region −1�Q<1.5 for �1,−1�Q�1.7 for � and −1�Q<1.5 for , otherwise augmented
pumping occurs. The frictional forces F against flow rate Q for different values of �1,� and
 are shown in Figures 4–6. It is observed from the figures that frictional forces have opposite
behavior as compared with the pressure rise. The velocity U for different values of �1 and M
are shown in Figures 7 and 8. We observed that the velocity profile decreases with the decrease
in �1 (see Figure 7). The effect of M on the velocity is almost opposite as compared with the
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case of �1. Here, the velocity profile increases with the increase in M . The temperature fields
for different values of �1, Pr and  against space variable Y are displayed in Figures 9–11. It is
depicted that with the increase in �1 and , the temperature field decreases while the temperature

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:374–394
DOI: 10.1002/fld



SLIP EFFECTS ON THE PERISTALTIC FLOW OF A JEFFREY FLUID 391

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-1.5

-1

-0.5

0

0.5

1

1.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-1.5

-1

-0.5

0

0.5

1

1.5

(a) (b)

Figure 16. Stream lines for different values of �1: (a) for �1=0.7; (b) for �1=0.8; (c) for �1=0.9. The
other parameters are a=0.5,b=0.5,E=1.5,M=0.06,d=1.0,�=0.02,Q=1.6.

field increases with the increase in Pr . The expression for axial induced magnetic field hx against
space variable y for different values of magnetic Reynold number Rm and slip parameter  are
shown in Figures 12–13. It is observed that with the increases in Rm and slip parameter ,hx
increases in the upper half of the channel while in the lower half the behavior is opposite.

The pressure rise for different kinds of wave shape are presented in Figure 14. It is observed
that the pressure rise for sinusoidal wave is less than trapezoidal wave and greater than triangular
wave. The temperature field � for different wave shapes are shown in Figure 15. It is seen that
the temperature field for triangular wave is greater than sinusoidal wave and sinusoidal wave is
greater than trapezoidal wave.

The trapping phenomena for different values of �1,M and  are shown in Figures 16–19. It is
observed from Figure 16 that the volume of the trapped bolus in the lower half channel is smaller
as compared with the upper half of the channel. Moreover, the size of the trapped bolus decreases
in the lower half of the channel with the increase in �1. It is depicted in Figure 17 that with the
increase in M the size of the trapped bolus increases. The stream lines for different values of  are
plotted in Figure 18. It is observed that the number and size of the trapped bolus decrease in the
lower half of the channel and increase in the upper half of the channel with the increase in . The
stream lines for different wave shapes, such as sinusoidal wave, triangular wave and trapezoidal
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Figure 17. Stream lines for different values of M : (a) for M=0.06; (b) for M=0.07; (c) for M=0.08.
The other parameters are a=0.5,b=0.5,E=1.5,�1=0.8,=0.01,d=1.0,�=0.02,Q=1.6.
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Figure 18. Stream lines for different values of : (a) for =0.01; (b) for =0.02. The other parameters
are a=0.5,b=0.5,E=1.5,�1=0.8,d=1.0,�=0.02,Q=1.6.
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Figure 19. Stream lines for different wave forms (a) for sinusional wave;
(b) for triangular wave; (c) for trapezoidal wave. The parameters are a=0.5,

b=0.5,E=1,�1=0.8,d=1.0,�=0.02,Q=1.6,=0.01.

Table I. Values of Nusselt number for different values of  (slip parameter), �1 (ratio of
relaxation to retardation times), d (width of the channel) and Pr (Prandtl number). The other

parameters are a=0.5,b=1.2,Ec =1, x=1, t=1,M=1,�=�/2.

 Nu �1 Nu d Nu Pr Nu

0.0 3.04216 0.0 3.77918 0.0 6.29996 0.0 0.333333
0.01 2.95211 0.2 3.25119 0.2 3.44381 0.4 0.839961
0.02 2.86647 0.4 2.86647 0.4 2.86647 0.8 1.34659
0.03 2.78497 0.6 2.57392 0.6 2.49755 1.2 1.85322
0.04 2.70733 0.8 2.34411 0.8 2.17929 1.6 2.35984
0.05 2.6333 1.0 2.15892 1.0 1.9118 2.0 2.86647

wave, are shown in Figure 19. The behavior of Nusselt number for different values of physical
parameters is shown in Table I. The table shows that with the increase in ,�1, and d , the Nusselt
number decreases while with the increase in prandtl number, Pr , the Nusselt number increases.
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